ar X iv : m at h / 06 09 18 4 v 1 [ m at h . C O ] 6 S ep 2 00 6 FACES OF GENERALIZED PERMUTOHEDRA

نویسنده

  • LAUREN WILLIAMS
چکیده

The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γ-vectors. These polytopes include permutohedra, associahedra, graph-associahedra, graphical zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas involving descent statistics, calculate generating functions and discuss their relationship with Simon Newcomb’s problem, express h-vectors for path-like graph-associahedra in terms of the Narayana numbers. We give a combinatorial interpretation for γ-vectors of tree-associahedra, confirming Gal’s conjectural nonnegativity of γ-vectors in this case. Included is an Appendix on deformations of simple polytopes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 09 18 4 v 2 [ m at h . C O ] 1 8 M ay 2 00 7 FACES OF GENERALIZED PERMUTOHEDRA

The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γ-vectors. These polytopes include permutohedra, associahedra, graph-associahedra, simple graphic zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas for h-vectors and γ-vectors involving descent statistics. This includes a combinatorial interpret...

متن کامل

ar X iv : m at h / 06 09 42 6 v 3 [ m at h . C O ] 1 5 O ct 2 00 6 SUM - PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN

We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.

متن کامل

ar X iv : m at h / 06 09 42 6 v 2 [ m at h . C O ] 5 O ct 2 00 6 SUM - PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN

We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.

متن کامل

ar X iv : m at h / 06 09 13 5 v 1 [ m at h . C O ] 5 S ep 2 00 6 Score sets in oriented bipartite graphs

The set A of distinct scores of the vertices of an oriented bipartite graph D(U, V) is called its score set. We consider the following question: given a finite, nonempty set A of positive integers, is there an oriented bipartite graph D(U, V) such that score set of D(U, V) is A? We conjecture that there is an affirmative answer, and verify this conjecture when | A | = 1, 2, 3, or when A is a ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009